This function fits continuous-time movement models to simulated location
data using the ctmm
package. It estimates movement parameters for each
simulated trajectory, optionally running in parallel for efficiency.
Usage
fitting_model(
obj,
set_target = c("hr", "ctsd"),
.dur = NULL,
.dti = NULL,
.tau_p = NULL,
.tau_v = NULL,
.check_sampling = FALSE,
.rerun = FALSE,
.parallel = TRUE,
.trace = FALSE
)
Arguments
- obj
A list of simulated movement datasets.
- set_target
A character vector indicating the research target(s). Options:
"hr"
- Home range estimation."ctsd"
- Speed and distance estimation.
- .dur
Numeric, sampling duration of the simulated data (required if
.check_sampling = TRUE
).- .dti
Numeric, sampling interval of simulated data (required if
.check_sampling = TRUE
).- .tau_p
List, position autocorrelation timescale (optional).
- .tau_v
List, velocity autocorrelation timescale (optional).
- .check_sampling
Logical; if
TRUE
, checks if the sampling schedule is optimal for ctmm.fit().- .rerun
Logical; if
TRUE
, re-runs model selection if effective sample sizes fall below threshold.- .parallel
Logical; if
TRUE
, enables parallel computation for efficiency. Default isTRUE
.- .trace
Logical; if
TRUE
, prints additional information.
Details
The function first generates initial parameter estimates using ctmm::ctmm.guess()
.
It then selects the best movement model for each simulation using par.ctmm.select()
.
The function ensures that each fitted model is centered at the origin (x = 0, y = 0
) before returning.