
Running \(\chi^2\)-IG hierarchical model meta-analyses (with permutations)
Source:R/fct_meta.R
run_meta_permutations.Rd
This function performs a meta-analysis on movement tracking data, for mean home range area (AKDE) or continuous-time speed and distance (CTSD) estimates for a sampled population. It leverages the `ctmm` R package, specifically the `meta()` function, to obtain population-level mean parameters. This function helps to evaluate the significance of results under permutation testing.
Usage
run_meta_permutations(
rv,
set_target = c("hr", "ctsd"),
subpop = FALSE,
random = FALSE,
max_samples = 100,
trace = FALSE,
.iter_step = 2,
.only_max_m = FALSE,
.lists = NULL
)
Arguments
- rv
A list containing outputs, settings and data objects. Must not be NULL.
- set_target
Character. Research target: `"hr"` for home range or `"ctsd"` for speed & distance.
- subpop
Logical. If TRUE, will run meta-analyses with groups. Default is FALSE.
- random
Logical. If TRUE, samples random subsets of individuals. Default is FALSE.
- max_samples
Integer. Maximum number of resamples when `random = TRUE`. Must be positive. Default is 100.
- trace
Logical. If TRUE, prints progress messages. Default is FALSE.
- .iter_step
Numeric. The size of each iteration step. Default is 2.
- .only_max_m
Logical. If TRUE, will only run the maximum number of individuals. Default is FALSE.
- .lists
A list containing already created meta inputs. Default is NULL.
Value
A data frame containing meta-analysis outputs, including estimates, errors, confidence intervals, and group information.
Author
Inês Silva i.simoes-silva@hzdr.de